AFRL-IF-RS-TR-2000-170
Final Technical Report
January 2001

ADVANCED SCALABLE NETWORKING
TECHNOLOGY

University of Southern California

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. C929

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20010605 107

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-170 has been reviewed and is approved for publication.

APPROVED: ;. | ~ .,
vlad

ROBERT L. KAMINSKI
Project Engineer

N

$enn Y

FOR THE DIRECTOR: @/% Al (//W,,,/./

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFG, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ADVANCED SCALABLE NETWORKING TECHNOLOGY

John Granacki

Contractor: University of Southern California

Contract Number: F30602-95-C-0296

Effective Date of Contract: 01 October 1995

Contract Expiration Date: 30 September 1999

Short Title of Work: Advanced Scalable Networking
Technology

Period of Work Covered: Oct 95 - Sep 96

Principal Investigator: John Granacki
Phone: (310) 822-1511

AFRL Project Engineer: ~ Robert L. Kaminski
Phone: (315) 330-1865

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Robert Kaminski, AFRL/IFG, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information, Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

JANUARY 2001

3. REPORT TYPE AND DATES COVERED
Final Oct 95 - Sep 99

4. TITLE AND SUBTITLE
ADVANCED SCALABLE NETWORKING TECHNOLOGY

5. FUNDING NUMBERS

C - F30602-95-C-0296
PE - 62301E

PR - C929

6. AUTHOR(S}
John Granacki

TA - 01
WU - 04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
University of Southern California
Information Sciences Institute

4676 Admiralty Way

Marina del Rey CA 90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES}

3701 North Fairfax Drive
Arlington VA 22203

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFG
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-170

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Robert L. Kaminski/IFG/(315) 330-1865

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT Maximum 200 words)

The Advanced Scalable Network Technology (ASNT) effort was a very ambitious project with several significant research
facts: the split network concept, the Trans-scalar Programming Model, subnet integration protocols and techniques
identified in the initial goals along with the DES encryption VLSI. The results show the split network concept to be very
powerful, providing a 50% increase in communication traffic before congestion and two orders of magnitude less variance in
latency on a low-latency control network. The DES VLSI implementation proved the feasibility of real-time DES support
which is essential for applications requiring security, high throughput and low latency. The Trans-scalar Programming
Model effort produced a hierarchical framework to solve scalable programming problems and led to a parallel version of
heapsort and a scale-invariant hardware architecture. Moreover, the ASNT hardware implementation is being used as a host
and test bed for PIM (Processor in Memory devices on the DIVA (Data Intensive Architecture) project.

14. SUBJECT TERMS

15. NUMBER OF PAGES

Computer Architecture, Paralle] Computing, Data Encryption Standard 64

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF ABSTRACT ABSTRACT

UNCLASSIFIED UL

Standard Form 298 (gev. 2-89) {EG)
Prescribed by ANS! Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 84

Table of Contents

1.0 Introduction ----------== == "= -“&-@-“&------------o------o------- |
2.0 Goals and Motivation-------== == - -2 - c-cmomm oo s oo o oo |
2.1 Initial Goals - === - - - - = s - e e s e m e e mm oo mm—o-e-oo - o- - 1
22 Revised Goals----=--=-=----“-2-c@ - oomoooo-ooommo- 2
3.0 Results - Theory and Initial Design ------------------------------------- 3
3.1 Network Simulation- - - - = === === -ccmm oo o mmm oo m oo oo oo m oo oo — - 3
3.1.1 MECA Network Simulation, C++ Implementation-----~------------------ 3
3.1.2 Network Simulation Graphs - - - - - ---=-=-=---=--=--------=----------= 4
3.1.3 Network Functional Specification - - - - - --=--~-----------=-----------~- 7
3.2 SafetyNet----------cc--cemm oo cmoo-ooooo—-mmm-moosooo s 7
3.2.1 SafetyNet Router/Interface Module Design- - --------------------------~- 7
3.2.2 SafetyNet Design Specification- - - - ----------------------------oo--- 7
3.2.3 SafetyNet Protection Model Tests - - - -~ ---------=-------=-----o-oooo- 8
3.3 DES and the SafetyNet--------------------~ L T 8
3.3.1 DES Augmentation of SafetyNet- - - -------------------------moooonn- 8
3.3.2 SafetyNet Security Subsystem -----=----=---------------------------- 8
3.4 “Trans-scalar” Programming Model - - - - - - - ------------cmmmmmmmoomommmm s 9
3.4.1 Introduction and Motivation- - - = - == -------=-------------------om--- 9
3.4.2 “Trans-scalar” Results - - - -~ -~ === ----omcmmmmmcmmmm e e m e m oo oo s 11
3.5 Computational Subsystem Architecture (Initial Design)--------------=-------~ 14
3.6 Software for Parallel I/O Subsystems - - - -~----=-----=---=-------=------~- 17
3.7 Router Size Trade-off Study - --------------=-----------------=------ 20
3.8 PDSS Router Modifications for ASNT = - --------=n-------mmoomommmmmmmoe 21
3.9 QRAM Protocol for Fast Network Interfaces - - --~------------------------ 22
3.10 I/O Node Subsystem Architecture (Initial Design) --------------=---~----~ 24
3.11 Bridge Node Subsystem Architecture (Initial Design) --------=---=---------~ 25
3.12 Conference Papers Submitted and Accepted- - ---~--=--------------------~ 27
3.12.1 “Lessons from Three Generations of Embedded Supercomputers” - ---------- 27
3.12.2 “Routing in Bidirectional k-ary n-cubes with Red Rover Algorithm”- - - - - - - --- 27
3.12.3 “The Red Rover Algorithm for Deadlock-Free Routing on Bidirectional Rings” - - 27
3.12.4 “A Fully Pipelined, 700 MBytes/s DES Encryption Core” - - - - ---------~---~- 27
4.0 Results - Design and Implementation - - -~ ----=--=-----=-------==-------~ 27
4.1 Packaging Architecture -----------------m---mooo--oommmmmmomom o 27
4.2 System Chassis - - -~ == =----- == oomm-o oo ommmoo oo 29
43T/0 Node Design-~------===-=cc-ccmmmmmm oo mmmmmmmmm oo 32
4.4 Compute Node Design - -------------cm-----oocmonooommmmmmmm o oo 33
4.5 Bridge Node Details- - -~ ---------c--oomemmomommm oo mmm oo oo 33
4.6 DES Operational Results - --~~--------ccccmmmommonmomm oo oo e s 36
4.7 SafetyNet---------cmmmoom oo eeosmmoo oo ommmo oo 40
4.8 Router Boards------------ e T 40
4.9 System ClOCK - = - = = -~ === === — - - s mmm e mmm e omeoo oo SR 40
4.10 System Bootstrap Procedure - - --------------------moonoomoomom oo 41

4.11 Generic Associative Lookup Module --- -« - c o oo mo oo
4.12Photo Gallery - - - -~~~ - oo oo oo __._

5.0 Conclusion

List of Figures

FIGURE 1. 8 X 8 Mesh, 8-bit Control Channels, 32-bit Data Channels~ - -------------- 4
FIGURE 2. ASNT Control Message Latency Histogram, 8X8 Mesh... ~--------------- 5
FIGURE 3. Conventional Control Message Latency Histogram, 8X8 Mesh...- - - - - - - - - - - - 5
FIGURE 4. 8 X 8 Mesh, 4 Control Msgs/Data Msg, 8-bit Control Channels... -~ --------- 6
FIGURE 5. Prototype protection architecture. - - - - - ==------=------------==----- 7
FIGURE 6. SafetyNet Design------------c---mm-mmmmooommm o oo mm o m o o - 9
FIGURE 7. Flat and hierarchical heap structures used in heapsort respectively. --------- 13
FIGURE 8. Scale-invariant architecture. (A) Single node. (B) 8-node module... - - - - - - - - - 14
FIGURE 9. Block diagram of Compute Node - - - ---=-------~------------------ 15
FIGURE 10. Compute node layout and ZIF connector use -----------------~---~-~ 16
FIGURE 11. Header and data paths for incoming control and data packets. - - - - - ------- 17
FIGURE 12. General-purpose associative lookup hardware. ---------------------- 18
FIGURE 13. Layered Structure of Parallel I/O Software ------------------------ 19
FIGURE 14. Data movement triggered by accesses to virtual queue head and tail- - - - - - - - 24
FIGURE 15. Original stacked system packaging concept and new planar concept- - - - - - - - 28
FIGURE 16. Details of new planar design for ASNT supernode. ------------------- 29
FIGURE 17. Three modules of ASNT supermodule. -------------=------------- 30
FIGURE 18. Power and ground connections in main module.- - ----~-------------- 31
FIGURE 19. Prototype IO node design (top) and new CompactPCI-compliant version - --- 33
FIGURE 20. ASNT Bridge Node Overview/Floorplan - - - -~ --------------------- 34
FIGURE 21. Circuit elements schematic (a) Key shift, (b) XOR, (c) Pipeline register...- - - - 39
FIGURE 22. General-purpose associative lookup hardware. - --------------------- 44
FIGURE 23. ASNT Supernode Block Diagram- - ---------------~------------~ 45
FIGURE 24. ASNT Hardware Implementation - - - - - --~-------==-------------~ 46
FIGURE 25. ASNTI/ONode Detail - - == ----------ommmmommmmmmmmm oo o - 46
FIGURE 26. ASNT System - Backplane with Supernode ------------------------ 47

iii

List of Tables

TABLE 1. 2-Point Switch Router with Conventional Perimeter Pads - - - - - - - - - - == - - - - 20
TABLE 2. 3-Point Switch Router with 2-TierPads - -------------cccmcme -~ 21
TABLE 3. Bridge Command Bus Device Map - ----------coommomm s 36
TABLE 4. Function Encodings----~=----cccmmmmmmm e e oo 36

TABLE 5. Comparison of implementation of one DESround - -------------------- 39

iv

1.0 Introduction

The Advanced Scalable Network Technology (ASNT) project builds on our past research experi-
ence with scalable multicomputer architectures. The Embedded Variant (EV) project was an 1860
based machine, running MACH OS and communicating over a mesh network. The Package-
Driven Scalable System (PDSS) was an extremely densely packed, PPC based machine, commu-
nicating with custom VLSI 1-D routers. Work on these systems led us to consider the splitting of
the communications mechanisms along functional lines, providing optimum service for different
types of messaging. This architecture can provide sustained performance much closer to theoreti-
cal peak performance than systems with any single conventional network. Also we cast an eye to
solving the problems of programmability, software infrastructure, user friendliness and system
balance.

2.0 Goals and Motivation

2.1 Initial Goals

The ASNT project will design and deliver a scalable desktop supercomputer. An innovative split
network architecture will be developed, and used to provide a scalable system with dramatically
improved levels of system balance, programmability and performance. Specific goals of the
project are:

 Develop a scalable computer with a communications network divided into four paralle]
subnetworks:

1. A moderate bandwidth, very low latency network for control messages.

2. A high-bandwidth, moderate latency network for memory-to-memory data transfers.
3. A simple but secure network for communicating and managing protection information.
4. A very-high-bandwidth network, as part of a separate I/O subsystem.

« Develop techniques and protocols for integrating the operation of these subnetworks, to
transparently provide higher overall performance to the user.

« Develop and demonstrate a hierarchical programming model which can exploit this
improved architecture, to reduce programming effort for complex applications.

Attainment of these goals provides a system platform that:
e enables a new “Trans-scalar’ Programming Model” that offers better performance and
convenience than either message passing or shared memory.

e provides graceful scalability where hardware and software produce a seamless transition
in programming model and performance across node and module boundaries.

» creates an I/O system that is a separate distributed computer linked node to node to the
compute system, thus guaranteeing balanced scaling.

* allows a new operating system paradigm in which the distributed operating system is no
longer a barrier between the application and the network.

* incorporates SafetyNet, a robust protection network to transparently and efficiently pro-
tect users and system from network intrusion or resource misuse.

* supports programming and interface standards, including MPI and MessageWay.

2.2 Revised Goals

To enhance the significant research value of the ASNT project, the project goals were reviewed
and revised, based on recent industry advances and projected technology trends. Our ability to do
this is itself a feature of the ASNT approach, in which functionality is cleanly separated, distinct
subsystems are defined, and the functionality is cleanly reintegrated, in a way that allows each
individual subsystem to track technology advances in a timely way. These revisions were
reviewed with the COTR and approved.

The following goals and/or features received increased emphasis.

* Integrating decoupled networks: The gap between low-latency and high-bandwidth commu-
nication solutions continues to grow. In particular, optical technology has yet to be adopted
in system area networks because of its high latency. By understanding how to couple multi-
ple networks of diverse performance into a unified communication fabric, ASNT makes a
place for such technologies in high-performance computing.

* Network Interface: In commercial machines, the problem still remains of providing fast
user-level access to a network interface, while at the same time maintaining coherence and
protection. The recent industry standard Virtual Interface Architecture is similar to that
introduced on the ISTEV machine in the early 1990’s, and is thus two generations behind the
ASNT design. ASNT network interface technology can therefore have a significant impact.

* Parallel I/O: The potential bandwidth and scalability of the ASNT IO approach is still
unmatched by any commercial system. IO is becoming increasingly relevant in general
applications such as web servers, and DoD-specific applications such as dynamic database
management.

* Authentication and Encryption: The ability to perform on-the-fly encryption and authentica-
tion of data is unique to ASNT, and its demonstration could make this technology spread
rapidly.

The following goals and/or features received reduced emphasis.

* Advanced Packaging: The market for advanced packaging is dominated by the requirements
of the portable computer industry, and we cannot impact this. Moreover, the path from low-
density packaging to high-density packaging is now well understood. Making a very small
system is no longer a compelling research topic, unless it is extremely aggressive. We did
undertake heroic and expensive measures for the sake of system volume.

* VLSI: Programmable logic parts are now large and fast, and are obtainable with embedded
RAM and other specialized features. There was no longer a reason to use custom VLSI for
generic logic running at memory-bus speeds. In particular, the network interface logic was
handled by FPGA’s. We thus removed custom VLSI from the project critical path, and lim-
ited it to the novel encryption technology.

o Router Technology: This was being driven by signalling technology, and specialized pad
drivers with GHz speeds were becoming available. We concentrated on the network inter-
face rather than building a state-of-the-art router, since the state of the art was changing rap-
idly. The network technology is upgradable.

e Programming model: MPI is now a standard on large-scale machines, and is acceptable as a
solution on a delivered system. However, the underlying ASNT hardware is capable of
much more sophisticated and interesting programming models. We therefore support a good
implementation of MPI as the production software, but then focused on providing generic
mechanisms with which to build and experiment with innovative programming models,
rather than promote any particular new model. We identified and investigated several chal-
lenges that needed to be met for practical hierarchical programming. In the end, though
solvable in a hierarchical fashion, a fully implemented solution was beyond the scope of the
proposal.

Revisions to the technical plan were as follows:

1. All network interface functionality was moved off the Compute and IO Nodes, and onto the
Bridge Node, where access is tightly controlled for protection and management reasons.
This had following consequences:

e The Bridge Node is the most complex part of the system.

 The Compute and IO nodes each export their 60X system bus through a connector.

« The Compute and IO subsystems no longer form stand-alone distributed systems. Instead,
Compute and IO nodes plug into the Bridge Subsystem, which provide each type of node
with direct access to its associated IO or Command/Data network.

2. 10 Nodes and Compute Nodes have the same physical interface to the Bridge Node, so IO
Node boards can be used as Compute Nodes.

3. The form factor of the delivered system is larger than originally estimated, although still
desktop sized. However, it is amenable to aggressive application of laptop technology,
which would shrink the dimensions well below the original estimate.

3.0 Results - Theory and Initial Design

3.1 Network Simulation

3.1.1 MECA Network Simulation, C++ Implementation

The MECA Network Simulator was reimplemented in C++ to allow convenient use for hierarchi-
cal network simulations. Validation tests were run comparing it with the original C version, and
with real hardware. Both versions reproduce the actual hardware performance. However, at high
traffic rates there is a slight numerical discrepancy between the C and C++ versions, which was
traced to an implicit design ambiguity in the arbitration between simultaneous events.

3.1.2 Network Simulation Graphs

To develop a functional specification for the control and data nets of ASNT, we conducted numer-
ous simulation experiments, such as the following. The message activity on the network is mod-
eled as one in which nodes perform remote reads by requesting data from other nodes at a Poisson
rate. This data transfer consists of 2 steps:

1. The source sends a 40-byte control message to a destination to request data.
2. In response to the request, the destination sends a 4-kbyte data message to the source.

The simulator allows several input parameters: network topology, traffic rate, network organiza-
tion (ASNT or conventional), etc. If a conventional network organization is chosen, both control
and data messages share the same set of channels. However, for the ASNT organization, the chan-
nel wires are allocated so that control messages have sole use of one set of channels while data
messages use another set.

For all experiments, the simulator was run with random destination traffic patterns. The results
presented are the averages of several runs. For each run, statistics gathering is initiated only after
warm-up transient effects become negligible. Results for average head-to-tail message latency
versus traffic Joad on an 8 X 8 mesh are shown in Figure 1.

12000 : T T
#
@ 10000 ! -
Q9
(&)
2y
KE) ;
> 8000 ASNT, control —— ; .
S conventional, control -+--- :
o ASNT, data -&-- :
- ional data ... ;
> 6000 L conventional, data [|
o ;
(o] R
A >
o) K
()]
= 4000 :
()]
U) ’
g
[4)]] S /
£ =2000f oo]
T.“'-“'."-'5513.'._'_';_'__-‘.'..'..'.19 e U B A
0 ¢ T .
0 120 180 240

Request Rate Per Node (requests/million cycles)
FIGURE 1. 8 X 8 Mesh, 8-bit Control Channels, 32-bit Data Channels

Head-to-tail message latency is defined as the amount of time from the generation of a message
until the tail flit of the message is received at the destination. Below, “conventional case” refers
specifically to a network organization in which both control and data messages share the same set
of 40-bit channels. Several other cases with varying network topologies, message sizes, etc., were
simulated, and all yielded similar results. For brevity, we present only the 8 X 8 mesh
cases.Notice that for the ASNT organization with separate control and data networks, the latency

for control messages is fairly constant and therefore predictable. For the conventional organiza-
tion, the control message latency increases with the data message latency as expected, since the
two message types share the same channels. However, by comparing the sum of the ASNT curves

to that of the conventional curves, we see that simply partitioning the network offers little
30 T T T T T T T T

25 | | -
@ 1
S
© 20 | .
@
[0}
=
B 15 | _
2 L
g
i -
8 10 | -
o]
o
5 1 -
0 1)] 1 1 l'—tﬁJ— | S

0 10 20 30 40 50 60 70 80 90
Message Latency (cycles)

FIGURE 2. ASNT Control Message Latency Histogram, 8X8 Mesh, 130 requests/million cycles

60 T T T T T T T T T
50]
[}
S
o 40 -
[2]
(]
=
k] 30 + i
o]
(o)}
g
5
o 20]
Q
a
10 1
0 M 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Message Latency (cycles)

FIGURE 3. Conventional Control Message Latency Histogram, 8X8 Mesh, 130 requests/million cycles

improvement in the overall latency of the remote read operation. However, considerable improve-
ment can result from optimizing the control and data networks for their specialized functions.

Even without such specialization, a major contribution of ASNT is the provision of a predictable
low-latency control network. To confirm the predictability of the ASNT control network, histo-

grams of control message latency are shown in Figure 2 and Figure 3. The variance in control
message latency in the ASNT case is seen to be two orders of magnitude less than in the conven-

tional case.
Since the major benefit of ASNT in these cases is the guaranteed low latency of control messages,
it is useful to determine the amount of traffic the control network can sustain and still perform this
well. We are currently conducting experiments to ascertain this point. Preliminary data is given in
Figure 4. The message traffic for this case is a Poisson distribution of control messages where
25% of the control messages are remote read requests and require a response of a data message,
as described earlier. The remaining control messages represent generic short system messages
which require no response. As shown in the graph, the ASNT system can easily sustain the extra
traffic on the control network. However, the congestion of the conventional system is exacerbated
by the extra traffic, causing it to saturate at a significantly lower traffic rate, as indicated by the
vertical asymptotes of the curves. For this case then, ASNT not only provides a low-latency con-

trol network, it also provides higher system throughput.

10000 T

9000

T

8000
ASNT, control —e— i

conventional, control --+---
ASNT, data -o-- h
6000 conventional, data -~ p i

7000

T

T

5000

T

4000

T

3000

1

2000

Average Message Latency (cycles)

0 . : ,
0 300 600 900

Control Message Injection Rate Per Node (requests/million cycles)

FIGURE 4. 8 X 8 Mesh, 4 Control Msgs/Data Msg, 8-bit Control Channels, 32-bit Data Channels

3.1.3 Network Functional Specification
A more comprehensive design specification document is available on request. The most unique

points are included in Section 3.6 Computational Subsystem Architecture, second half and 4.11
Generic Associative Lookup Module.

3.2 SafetyNet

3.2.1 SafetyNet Router/Interface Module Design

To assess the real hardware overhead from enforcing protection, an architecture for a SafetyNet
module was developed for inclusion in the router/interface component on the PDSS project. The
module inserts and check protection bits in each message and enables safe direct user access to
the communication hardware (Figure 5). This is not a complete implementation of the SafetyNet
concept since the protection information is not carried on a separate protected network, and the
system as a whole is still vulnerable if the user penetrates the OS protection on any one node.
However, it will allow measurement of the silicon area and number of clock cycles required by the
logic interfacing to the control, data and I/O networks.

Receiving
Principal

. Identifier Processor and
Register number or (N bits) Interface registers

physical DRAM address

Access to processor or interface registers requires

Incoming
Packet

¥ _—7 - N exact match between ID of message sender and ID
\ // i \ of current user of the processor.
J | 0]
~ —
. <\ /
Sending ~ / 0]
.. AN 0
Principal ~__7 1] DRAM
Identifier \ 0]
(N bits))
0]
0] Access to DRAM only requires mask
FIGURE 5. Prototype protection Valid bit corresponding to_ sender’s ID t.O
architecture. Principal ~ be equal to 1, allowing several prin-
Mask cipals to validly access DRAM.
(2™ bits)

3.2.2 SafetyNet Design Specification
A more comprehensive design specification document is available on request. The most unique
points of the design have, however, been included in this final report.

3.2.3 SafetyNet Protection Model Tests

For test purposes, a prototype of the SafetyNet network filter was included in the RIF network
chip, a component developed for the PDSS project. The filter supports a communications inter-
face in which applications have direct access to local and remote network hardware, by stamping
outgoing packets with an identifier, and allowing receiving nodes to selectively intercept packets
when necessary.

The filter logic was tested successfully, and operated as designed. Extensive testing was not pos-
sible in this iteration of the chip because unrelated problems in the ground circuitry of some on-
chip data buffers precluded processing large volumes of network traffic.

3.3 DES and the SafetyNet

3.3.1 DES Augmentation of SafetyNet

A survey of security and cryptographic literature was conducted to establish a starting point for
the architecture of the SafetyNet security subsystem. As a result of this survey, we have elected to
augment the initial protection mechanisms of the SafetyNet, i.e., network-interface firewalls, with
encryption and cryptographic authentication of the data resident in the I/O node memory and
transported by the I/O network. The XOR message-authentication code (XOR MAC) technique
recently developed at IBM is amenable to parallel and pipelined implementations. This is in
marked contrast to other cryptographically strong MACs in current use, such as MD5 or cipher-
block-chained DES. Present network cryptographic MAC techniques were developed for efficient
software implementation, and are severely limited in their ultimate performance by inter-block
chaining, which introduces dependencies that preclude substantial pipelining or parallelism in
implementations.

In support of the specification of the high-bandwidth encrypting bus bridge component of the
SafetyNet, sample encryption circuitry was specified in the Epoch VLSI synthesis system to pro-
vide chip area and timing estimates for a pipelined encryption implementation. As a result, we
estimated that the bridge, with the three DES computational pipelines required for simultaneous
data encryption and XOR MAC authentication, can process data at rates in excess of 400MB/s
with a chip area comparable to that of our PDSS router and network-interface design (roughly
250,000 transistors). If realized, this throughput would be an order of magnitude superior to exist-
ing provably-hard cryptographic authentication systems.

3.3.2 SafetyNet Security Subsystem
We have chosen to incorporate our high-performance encryption and authentication technology in

an encrypting bus bridge between a “Siamesed” pairing of the computational and I/O nodes (see
Figure 6). Data will be encapsulated in “secure objects” which will be encrypted and tagged with
cryptographic authentication codes on the fly as they are transmitted at full bus speeds between
the two nodes. This new bus bridge component of the SafetyNet security subsystem is more
highly coupled with the I/O node than originally envisioned, so some parts of the I/O node design,
primarily the memory system interface, were reworked as needed.

Compute Node Encrypting Bridge I/O Node

> 400 MB/s
64MB — 64MB
DRAM Pipelined DES DRAM
DIMMs 64b ECB ¢sb | DIMMs
¥ Calculator /
TP Fipelined DES <
ipeline
333MHlz, XOR MAC 266MHz
ower Calculator ower
604e ¢ 603e
33MH:z
SafetyNet ———P» P(S)ZB%EC l—— SafetyNet

FIGURE 6. SafetyNet Design

The initial version of the SafetyNet was implemented using Altera Flex10K FPGA programmable
logic under the control of an embedded processor which performs initialization and key manage-
ment. The complexity of the encryption and authentication datapaths was too great for compact
implementation in the FPGAs, so we initially implemented a reduced number of the 16-stage
DES pipelines. We also elected this course in VLSI implementations. This validates our control-
logic and datapath designs and timing estimates at lower cost than the fully replicated 16-stage
final product. Some parameters of the detailed design therefore reflect the results of fitting HDL-
synthesized logic into the FPGAs.

3.4 “Trans-scalar” Programming Model

3.4.1 Introduction and Motivation
The basic insights motivating this hierarchical programming model are as follows.

1 The main challenge in programming distributed-memory machines is managing data move-
ment and synchronization. The message-passing paradigm is inconvenient because it splits
each data movement into two operations, a send and a receive. Similarly, a shared memory
model supporting remote read and write introduces synchronization complexities. Both of
these can be avoided in a small machine by having a centralized controller manage data move-
ment, synchronization, and computation scheduling.

2. The centralized controller can be realized as a von Neuman CPU. Data movement then appears
as load and store operations of data blocks, execution of a task appears as dispatching a block
instruction, and synchronization is implicit, because loads, stores and block operations are con-
ceptually atomic.

3. Similarly, in a large machine, several centralized controllers, each managing a portion of the
system, can in turn be managed by a master controller. Data objects maintained by the master
controller are directories listing objects managed by the local controllers. Instructions per-

formed by the master controller manipulate directories and perform operations on the pointers
that are their contents. The layering can be repeated to create a hierarchy of controllers, con-
trolling as large a system as desired with only logarithmic overhead.

. Programming complex applications in this model should be more convenient than cither the

single program or multiple process models available now, because the programmer has both a
global and a local view of the machine, depending on whether one is programming a controller
or one of the nodes it manages. It should also be more flexible, since the data structures used to
manage distributed data are directly accessible to the application as higher-level objects. Thus,
one should be able to successfully program applications involving very complex data move-
ments and synchronization patterns.

. On the ASNT system, very efficient control-message transactions can facilitate managing com-

putations in much more sophisticated ways than on current machines. In particular, a controller
node can maintain close control over its subordinates, and not adversely impact their through-
put with context switches, high-cost interrupts, etc.

The challenge is to turn these insights into a complete, general-purpose programming model. A
literature search was performed to locate prior work along these lines, and the conclusions were:

1

There are numerous existing models based on the divide-and-conquer paradigm, which is
applicable to restricted classes of algorithm. However, these do not address data movement, or
simplify it in any way. Also, they do not exploit the fact that there is an isomorphism between
the machine acting as a controller and the machine being controlled. Instead, they work explic-
itly with groups of processors. The most extensive work of this type is by the “Skeletal Paral-
lelism” group, e.g. Skeleton-based Parallelisation of Functional Programs, Bratvold 1995 and
Towards a Skelton Based Parallelising Compiler for SML, Michealson, Ireland &King 1997 at
Heriot-Watt University, Edinburgh, UK.

. The divide-and-conquer approach is generally regarded as simply one of a number of classes of

algorithm needed for parallel programming. There is no analog of our observation that the
other classes of algorithm, e.g., systolic, SIMD or dataflow, are also special cases of a more
generally applicable hierarchical model of distributed computation.

. Many authors have remarked that good scalable algorithms seem to be hierarchical, but have

not pursued any practical implications of this fact.

Ad hoc hierarchical approaches were common in the days of hypercubes, but have waned since
then, under the misperception that mesh topologies do not need them or support them well.

We identified several challenges that need to be met to make the hierarchical programming
approach practically useful. We investigated these by developing a C-based package for imple-
menting hierarchical applications. It appeared that each of these challenges amounted to solving a
major problem with existing scalable programming techniques, and that the hierarchical approach
provides a uniform and consistent framework for solving them.

1. Data objects must be relocatable. For the system to move data blocks around in response to

load and store operations from a controller, these data blocks must be relocatable. The usc of
pointers in data must thus be carefully restricted. On the other hand, directories make heavy
use of pointers, and directories are simply data blocks to a higher-level controller. We resolve

this dilemma by observing that a controller and a controllee operate in different name spaces.
The controllee has access to a few data blocks, and can access their contents, whereas the con-
troller has access to many more data blocks, but cannot access their contents. As long as con-
troller and controllee use pointers within their own name spaces, data remains relocatable,
without requiring a non-scalable global address space. This approach appears able to resolve
the contentious issue in scalable computing of how to provide a global address space, and
whether it should be physical or virtual.

. Inconvenient boundaries must be removed. Existing hierarchical approaches are tree-based,
and trees have the undesirable property that they introduce artificial logical boundaries
between nodes. Thus, two nodes may be physically adjacent, but if they are located in different
coarse-grained subtrees, significant administrative overhead can be required to allow them
interact. A resolution is to organize the hierarchy so that controller domains overlap, and phys-
ically adjacent nodes are guaranteed to both be members of at least one such domain. This
introduces an aliasing and synchronization complication, but it is one that can be handled
transparently by the system.

. Copy vs. move semantics. In conventional programming, loads and stores are copy operations
between source and destination, and for large distributed objects this can waste resources if the
desired operation is actually a move. It is also slow if source and destination are on the same
node, and the move can be accomplished by simply renaming the object. Lazy copying supple-
mented with copy-on-write techniques can solve this partially, but they can nullify attempts at
latency hiding. Thus, the controller operations, and the language or compiler used for program-
ming them, need to distinguish between copy operations and move operations.

. Type strictness issues. Directory entries, which make up the data of higher-level objects, can be
implemented with a range of type strictness. Least strict is to treat them as ordinary data. Alter-
natively, all directory entries could have one special type. Finally, a directory entry could have
a type specific to the type of the object it refers to, and/or the type of object it is present in. It is
not resolved at present how type information is best distributed between the compiler, the
application, and the system. We are investigating whether the typing available in C is strong
enough to conveniently implement a large hierarchical system.

. Control dependence issues. A distributed computation cannot proceed efficiently if the direc-
tions of branches in one part of the machine often depend on highly dynamic data in another
remote part of the machine. Whatever the application, developing a successful scalable appli-
cation hinges on solving this issue in one way or another. In our case, the issue appears very
cleanly and explicitly: branches in the program executing on a controller node should not
depend regularly-on the details of the contents of the objects it is managing. This caveat leads
to a useful principle for structuring scalable algorithms.

3.4.2 “Trans-scalar” Results

The Trans-scalar Programming Model proved to be a concept with far-reaching applications, but
is subtle and requires extensive work. The assessment was made that the specification of a com-
plete, implementable hierarchical programming model along these lines was beyond the scope of
the contract. This did not affect the ASNT system itself, which can support conventional program-
ming models, including MPI, as planned.

11

Nevertheless, a number of promising results using the Trans-scalar Model have been achieved.
We discuss two of these results here.

First, use of the Trans-scalar framework has led to the discovery of a parallel version of the
heapsort algorithm. Although not quite as fast in the average case as quicksort, heapsort is a very
powerful and popular algorithm because it has the same N log N complexity as quicksort for the
average case, and its worst case complexity is also N log N. In contrast, the worst-case complexity
of quicksort is NZ. There are numerous parallel sorting algorithms available in the literature,
including quicksort, but heapsort has eluded parallelization until now because its complicated
data movement requirements have been too difficult to analyze and implement on a distributed
memory machine.

The basic idea of sequential heapsort is to consider the items to be arranged as a binary tree, and
then migrate large items towards the root and small items towards the leaves. It takes log N steps
for the largest item to reach the root of the tree, where it can be removed and placed at the end of
an ordered list.

It might seem that this treelike heap structure is artificially well-suited to a hierarchical program-
ming model, and therefore not a good illustrative example. However, just the reverse is true. The
hierarchical structure exposed by the Trans-scalar paradigm is unrelated to the heap structure, and
is easily applied to other sorting algorithm as well. An intuitive derivation of the algorithm is as
follows.

Consider sorting a large set of N items. Suppose that, accidentally, groups of M adjacent items in
the unsorted set are identical, i.e., that the set consists of N/M blocks, each of which contains M
copies of one item. Clearly, if one knew ahead of time that the set had this structure, it could be
sorted much faster than the theoretical average N log N, by just treating each block as a unit and
sorting the blocks.

One can therefore write a heapsort routine for the blocks, which is identical to the one from Press
et al’s Numerical Recipes, except that 1) Each numerical comparison is replaced by a “block com-
parison” routine that compares a representative item from each blocks, and 2) Each data exchange
becomes a block data exchange.

Next, suppose that the items in each block are not necessarily identical, but that the ranges of val-
ues in separate blocks do not overlap. Then one can still use the above algorithm, provided 1) the
comparison uses maximum and minimum values from each block, and 2) there is an additional
step to sort the contents of each block. This is still faster than sorting all N items together. More-
over, it is parallelizable, because the sorting of individual blocks can be done concurrently.

Finally, consider the completely general case where there is no known relationship between items
in different blocks. One can still use this algorithm, provided each comparison operation is
replaced with a “merge and compare,” in which two blocks of items are sorted into two new
blocks containing the largest and smallest items. The fact that individual blocks can be sorted in
parallel is still true. Moreover, one can use heapsort to sort block contents, or if blocks are large,
one can split each block into sub-blocks, and reapply the algorithm we have just presented.

12

Flat

Hierarchical

FIGURE 7. Flat and hierarchical heap structures used in sequential and hierarchical heapsort
respectively. The hierarchical grouping essentially identifies blocks that can be usefully sorted
concurrently.

We programmed this hierarchical algorithm and tested it with random data sets of up to 1 million
items on a Sparcstation. It is some 30% slower than an optimized sequential quicksort, and about
10% slower than a sequential heapsort. In return for this, it is in principle automatically parallel-
izable within the Trans-scalar framework, which is designed to treat blocks of data as individual
objects. Figure 7. shows the heap structure in a conventional sequential heapsort, and two levels of
the heap structure in a hierarchical heapsort where each block contains 3 items.

We began design of a class library for C++, essentially creating a C++ language extension we call
préC. This allowed construction of hierarchical programs exhibiting several key features
abstracted from examples such as the one above. The name derives from the fact that each object
(i.e., block of items in this example) is conveniently summarized by a smaller object (in this case
the maximum and minimum values of the range), and that only the information in the summary is
required globally for the computation to proceed. This appears to be one of the common features
of scalable algorithms.

The second result is a scalable hardware architecture which illustrates several of the useful
properties of self-similar hierarchical systems, in particular the ability to achieve graceful scaling
across node and cabinet boundaries. The architecture was not being proposed for implementation
under ASNT, but is intended to facilitate analysis of the Trans-scalar Model. Consider building a
two-dimensional scalable system as follows.

The basic building block is the node shown in Figure 8, which is a rectangular module containing
a network router, some onboard computational components (not shown) and connectors on two
edges. Eight of these modules are arranged in a one-dimensional network, using an extra board
for the top and bottom of the eight-node system. The top board provides a connection to a higher-

13

HHH R
anuany

SRR SN
f

H

=
i
-4

] ¢
H

(A)

H -

(©

(B)

FIGURE 8. Scale-invariant architecture.
(A) Single node. (B) 8-node module. (C)
83-node 3rd-order module.

bandwidth network, and the bottom board provides edge connections for the original one-dimen-
sional network. Now the 8-node module is simply a scaled-up version of the node, so it can be
used to build a larger system, etc. At each step, one combines 8 modules and adds hardware for a
higher-bandwidth network, to create a similar module.

The system is clearly scalable. However, it is different from conventional scalable systems in that
it has no intrinsic scale, i.e., it is scale-invariant, not just scalable. The computational components
on the original node could similarly be a scaled down version of the figure.

The network is also interesting in that there are no module boundaries: every node is connected to
it’s neighbors by fine-grained network links. The higher bandwidth links form express channels
between modules, and the one-dimensional network is wound into a space-filling curve. Three-
dimensional analogs exist as well.

Some of the practical aspects of this design were borrowed to create a high-density packaging-
driven scalable system under the Integrated Thermal Management (ITEM) project at ISI

3.5 Computational Subsystem Architecture (Initial Design)

A node in the computational subsystem consists of the ControlNet and DataNet hardware, a
high-performance microprocessor for doing the bulk of the computation in an application, a high-
speed memory system, and an interface to the SafetyNet and I/O subsystems. Figure 9. is an ini-
tial block diagram, and Figure 10. shows an initial board layout.

The cache and network logic were designed on a separate daughter board for maximum flexibility.
Attachment to the nodeboard is through a 288-pin ZIF socket, which had recently become avail-

14

60X 60X 60X
CTL ADDR DATA

MPC106
603e or PAL-
3 .
5z
[+ =
a o . E
=l | &

FIGURE 9. Block diagram
of Compute Node

Integrated |
Network Interface
and L2 Cache

XX XX XX

able, and which Motorola was using in their own PowerPC systems. Because of its convenience,
this socket was also to be used as a general attachment technique in the ASNT system, for con-
necting Compute, SafetyNet and I/O subsystems. Signals were to be brought out as pin arrays on
one board, and inserted into the ZIF socket of another board.

The final ASNT system (late ‘98) would use PowerPC 604 processors. For the Early ASNT pro-
totype we use 200MHz PowerPC 603 processors, which, although not as fast at floating point, are
pin-compatible with the 604 and much cheaper ($211 each).

We have investigated using the Motorola MPC106 PowerPC system integration component for
the glue logic on the Compute node. The MPC106 contains all the necessary bus-, memory- and
cache-control logic required for a PowerPC system, on one configurable chip, as well as a large
amount of other logic such as a PCI bus interface. However, the cache model is inadequate for our
fast network interface, and would have to be bypassed, so the only module the compute system
would use from the 106 would be the Synchronous DRAM controller. We are therefore planning
to replace the 106 on the compute node with simpler PALs. The 106 remains an integral part of
the /O node design, where the cache model is adequate and the PCI interface will be exploited.

The fast network interface uses a technique called snarfing to minimize the amount of bus activ-
ity required to send and receive packets. Packets arriving from the network are held in the network
interface, where they are tagged with the RAM address they will ultimately be written to. If the
microprocessor reads this address, the network interface responds instead of the DRAM, and puts
the data on the bus just as a normal cache would. However, unlike a typical cache, the network
interface simultaneously converts the intercepted DRAM read into a DRAM write, so that the data
is inputted by the microprocessor and stored into DRAM simultaneously. The data in the interface
is thus effectively flushed to DRAM, so the interface can invalidate the block it is holding, and
make way for the next arriving packet.

Using this technique means that every arriving packet appears only once on the data bus, com-
pared to a normal delivery which drives it once to write to DRAM, and once when the micropro-

15

cessor reads it from DRAM. It is therefore the fastest possible way to deliver network packets
without introducing multiple buses.

Long data messages are delivered using a slight variation of this policy: the head of the message
is cached in the interface for a fixed number of cycles, to allow the microprocessor time to come
in and read it. If the microprocessor continues to read the message sequentially, all data is
obtained directly from the interface. However, if the data is not read by the microprocessor within
the specified number of cycles, the interface proceeds to flush the data to DRAM so that the long
message does not continue to block the network.

The network interface on the send side is similar, and includes a mechanism for triggering the
sending of data.

Transparent integration of the control and data networks is achieved as follows. For highest per-
formance transfers of large amounts of data, the best algorithm is to send header information to
the destination on the ControlNet, so that it arrives well ahead of the data, and the receiving node
has time to prepare for receiving data. This preparation can include fetching partial cache lines
requiring read/modify/write, configuring the inline shifter to align incoming data properly, notify-
ing a user process that data is about to arrive, etc.

To avoid the situation where congestion or failure on ControlNet causes the header information to
arrive after the data, we use a protocol where a copy of the header information is automatically
sent as part of the data message as well. If the control message arrives first, it is used to begin
reception setup, but if it is delayed, reception can still proceed using the copy included with the
data, and the message can be drained from the DataNet hardware.

The control message is thus a performance hint to the receiving side. The interface architecture is
such that headers on the Control- and DataNets follow the same logic path once they are identified
as headers. (Figure 11.). The headers are tagged with unique identifiers, so that the interface can
match data to the correct header when multiple messages are processed simultaneously.

16MB DIMM’s 288 Pin PGA on Bottom for
ZI{ Socket Bridge Node
\ Connection

FIGURE 10. Comput
e node layout and ZIF
connector use

ZIF Socket for
Daughter Card

16

OTHER

CTL PACKETS <) - S
< a
& a
FROM
CTL
NET RCV HINTS g
3
L
TAG :
> LOOKUP [a
MODULE i
&
O
=
RCV DESC g
FROM =
DATA
NET ADDR
SHIFTER
DATA paTa L

FIGURE 11. Header and data paths for incoming control and data packets.

The value of a multistage implementation strategy is clearly illustrated in the design of the
associative lookup module, the hardware required for tag matching. Similar modules are used in
other places in the interface, e.g., for converting node numbers to routing information. The aver-
age speed of the lookup depends on the size of the table maintained within the module, and the
statistics of the incoming lookup requests. Performance and flexibility of the lookup thus depends
directly on the implementation effort. To facilitate early system integration and testing, associa-
tive lookup modules was to be implemented in the following steps (see Figure 12).

1 Header information is maintained in DRAM by the CPU, and is passed to and requested from
the CPU on each transaction., using CPU-accessible registers in the interface plus interrupts.

2. An internal “active header register” is added to store the header information and tag of the most
recently received header. The tag on an arriving data message is compared against the tag of
the active header register, and if it matches, the header information is used immediately, with-
out requiring intervention from the CPU. If the match fails, the CPU is interrupted, and it stores
the active header in DRAM and replaces it with the matching one.

3. A cache is added to hold several recently received headers, so that if the tag misses in the active
register, the cache is checked before interrupting the CPU.

4. A hash table state machine and a table base register are added, to support searching a DRAM
hash table for headers if the tag misses in the cache, without interrupting the CPU. If the header
is not present in the hash table, the CPU is interrupted.

The same mechanism can be used for associative lookup of any type of information, not just head-
ers. It is analogous to the TLB support for virtual address translation within the CPU. This
approach yields an extremely flexible network interface, with efficient separation of mechanism
and policy for data transfers.

3.6 Software for Parallel I/O Subsystems

We sﬁrveyed available parallel I/O software, and designed a system. The system is layered as
shown in Figure 13.

17

The functions of the layers are as follows:

1

The disks are off-the-shelf 2GB UltraSCSI disks suitable for use in Apple Macintosh systems.
SCSI disks have built-in interface electronics which allows a controller to interact with the disk
using a standard set of commands, and reference data blocks on the disk using logical block
numbers rather than cylinder, head and sector information.

. The controller is also a COTS UltraSCSI board, currently anticipated to be an Adaptec AAA-

130 series. These boards can support either a single drive, or multiple drives configured trans-
parently as a RAID subsystem. In either case, the interface to the Operating System is a stan-
dard PCI Bus Master protocol, and the data on the disks is accessed using logical block
addresses. Redundancy is managed transparently by the board itself.

. The disks managed by each disk controller are treated as a single Linux file system. Linux

already contains drivers support for Adaptec Boards, although small modifications will be
required to support the 130-series.

. The function of the parallel file system is to integrate the separate Linux file systems into a sin-

gle system, with a single name space, and with data from each file distributed across several
nodes. The parallel file system differs from a conventional sequential file system in that it can
efficiently support concurrent access to the same file from many nodes. It can also maximize
transfer rate by operating all disk channels concurrently.

NOT-PRESENT
INTERRUPT, to CPU

Off-chip hash table
HASH.- in DRAM
TABLE
ENGINE
' On- or off-chip hash-
¥ table engine
[c f—ad [CYALUEREG }— CPU accessible registers
continue E
default =
:l::: t & > » Recent values in cache
2 4

CACHE
CTLR - »ITAGl | __ACTIVE __J—y

§

FIGURE 12. General-purpose associative lookup hardware.

Active value in register

]l T —

TAG VALUE

CONTINUE
READ

18

FIGURE 13. Layered Structure of Parallel I/O Software

| |
| |

Concurrent | Concurrent I Concurrent

Process [Process | Process Compute
| | Subsystem
| {
i Parallel /O System |
______________ +_..____..____._..__.._.{..__..__......_...._....._.._..__.__-
: Parallel File System :
I [
Linux File l Linux File l Linux File
System | System ! System Device (1/0)

[l Subsystem
I |
| |

UltraSCSI I UltraSCSI RAID [UltraSCSI

Disk Controller | Disk Controller | Disk Controller
| I
[!
I |
| [

SuperNode A ‘ SuperNode B ! SuperNode C

ASNT will use the Portable Parallel File System (PPFS), which is a library of I/O routines
from the University of Illinois (UIUC) implemented on top of a set of conventional Unix file
systems.

. The Parallel /O System is another layer of library routines which application processes use to
perform file I/O. Its primary goal is to provide a standard, portable interface between the /O
system and the application. The usual Unix open/seek/read/write/close primitives are inade-
quate because they involve an implicit shared file offset pointer, and thus force sequential
access semantics on the I/O. ASNT is using the MPI-IO standard as an interface, because it
addresses this in a simple way, and it is likely to be part of the next MPI standard.

. The concurrent processes run on the compute nodes, and perform I/O using the MPI-IO primi-
tives. These are conveyed via the SafetyNet bridge nodes to the parallel file system on the /O
nodes.

Several alternative parallel file systems were investigated, including IBM’s commercial PIOFS
and its research version Vesta, Intel’s PFS, the Galley Parallel File System from Dartmouth, the
Scotch Parallel Storage System from CMU, the PASSION system from Syracuse, the Wisconsin

SHORE system, and HiDIOS, a file system for a Fujitsu array processor.

19

PPFS was chosen because it is well tested, and is implemented at the library level, allowing con-
venient modification and debugging. It is compatible with the ASNT secure objects model, essen-
tial providing a high-level naming and retrieval model for the ASNT secure objects stored on disk.

The ASNT I/O system may be enhanced by supporting a second level of redundancy, between file
systems on distinct nodes. This can be achieved by running CMU’s RAIDframe software as a
layer between the parallel file system and the individual Linux file systems. For very large sys-
tems this would provide a extra measure of fault tolerance, for instance against failure of the disk
controllers themselves. However, for the ASNT prototype, supporting RAID at each node sepa-
rately was the primary goal.

To create a development system, we have installed Linux on two PowerPC-based Macintosh
clones connected via fast ethernet. The PPFS and MPI-10 software was installed

3.7 Router Size Trade-off Study

We conducted a design trade-off study to determine the router datapath size which yields the most
space-efficient implementation, assuming conventional low-cost packaging techniques are used.
This study was motivated by the high cost encountered on PDSS in implementing a single-chip
wide-datapath router. Although a multiple-chip implementation will require more PC board area,
the savings in packaging expenses easily compensate for this cost.

Table 1 shows the resulting sizes of different versions of a 3-point switch router. The versions dif-
fer only in the size of the channel datapath. The pad frame perimeter values are based on conven-
tional perimeter pads on a 140 m pitch. The core perimeter values are based on the PDSS router
design, upon which the ASNT routers are based. The number of signal pads is obtained by multi-
plying the datapath size by 6 and adding a constant of 14 signals (for control, clock, and reset).
The total number of pads was then determined by multiplying the number of signal pads by 1.2 to
allow for an adequate number of VDD and GND pads, then adjusting as necessary to fit in a stan-
dard size package.

TABLE 1. 2-Point Switch Router with Conventional Perimeter Pads

Datapath Inner Perimeter of Core Perimeter (Lm) Core Perimeter (it m)
Size Pads Pad Frame (um) (0.81L m technology) (0.5pu m technology)

8 76 2660 X 2660 2560 X 1870 1920 X 1400

16 132 4620 X 4620 2730 X 1890 2050 X 1420

32 248 8680 X 8680 3060 X 2580 2300 X 1940

64 480 16800 X 16800 3780 X 3980 2840 X 2990

From this table, it can be seen that the control circuitry and interconnect area dominate the core
area for datapath widths up to about 16 bits, i.e., the datapath area is insignificant compared to the
control circuitry area for these sizes. Hence, there is little difference between the core areas of the
8 and 16-bit versions. Also, it appears that the 8-bit version is the most area-efficient version,

20

regardless of technology, although in the 0.8 m version the space between the core and pad
frame may not be adequate for interconnect routing. The 16-bit version is the next best option.
The main benefit of using the 16-bit version over the 8-bit version is that chip count is reduced by
50% when constructing larger datapaths. It is also clear from the table that, with peripheral pads,
32-bit and 64-bit versions are not practical due to large amounts of wasted space.

MOSIS does support 2-tier pads at a slightly larger pad pitch within a tier. For 2-tier bonding,
smaller pad frames result, as shown in Table 2. In this case, an 8-bit version would require the

TABLE 2. 3-Point Switch Router with 2-Tier Pads

Datapath Inner Perimeter of Core Perimeter (Wm) Core Perimeter (1L m)
Size Pads Pad Frame (um) (0.8 m technology) (0.5 m technology)

8 76 1750 X 1750 2560 X 1870 1920 X 1400

16 132 2800 X 2800 2730 X 1890 2050 X 1420

32 248 5430 X 5430 3060 X 2580 2300 X 1940

64 480 10500 X 10500 3780 X 3980 2840 X 2990

pads to be spaced out more than is necessary, although not excessively in the 0.5 m version. The
16-bit version appears to be the most space-efficient in this case, while the 32-bit version
becomes much more reasonable. The 64-bit version is still not feasible. Not only does the 64-bit
version waste a lot of space, the packager MOSIS uses does not offer any device with over 400
pins.

3.8 PDSS Router Modifications for ASNT

The PDSS router was designed to route fixed-size message packets. While a similar design can be
used for ControlNet, which also routes fixed-size packages, both DataNet and DeviceNet must
support variable-length messages. This requirement results in the following modifications:

1. Some designation of the length of a message must be encapsulated in the message itself.
Conventionally, a tail bit signal is used to indicate the end of a message.

2. With fixed-size messages and internal router buffers capable of storing an entire message,
handshaking is performed only once at the start of a message transfer. Handshaking must be
performed on each flit of a message with variable-length messages, since it’s possible for
any flit to fill up the buffer space so that no more data can be forwarded.

3. The buffer control method for forwarding flits of a message from router to router will prob-
ably require modification to minimize the control circuitry. With fixed-size messages, a
sequence of output enable signals for the flit buffers results in a fairly simple controller.
With variable-length messages which cannot be stored entirely in the flit buffers, it may be
more feasible to use a scheme in which the data is shifted among the flit buffers as a mes-
sage is forwarded to the next router.

21

3.9 QRAM Protocol for Fast Network Interfaces

When a microprocessor interacts with a network interface, it needs to convey data as well as tim-
ing (synchronization) information. The latter includes triggers for interface actions, announce-
ments of message arrivals and action completions, and setting and clearing of locks on shared
storage locations. In addition, there are activities associated with keeping any caches coherent.

ASNT provides user-level access to the network interface. Although this enables very high perfor-
mance, a potential side effect is that the user is burdened with having to understand details of the
interface and/or caches. One reason that shared memory is regarded as more user friendly is that
the user (in principle) doesn’t have to worry about cache or network details. However, the shared
memory abstraction does not scale well, and its performance is not sustainable in large systems.
To achieve good performance, message-passing abstractions like queues must be added. The
question is, how to support user-level queues without burdening the user with cache and interface
details.

The QRAM protocol we have developed provides an elegant and efficient user-level interface to
queues, and the mechanism can be adapted to other communication abstractions as well. Advan-
tages are:

1. Very low latency access, requiring no accesses to interface control and status registers.

2. Clean integration with the memory hierarchy, allowing automatic exploitation of caches
without user participation or special programming.

3. Processor-independence, because it uses ordinary memory read and write operations.

4. Support for both local and remote operations.

5. Complete transparency of the queue implementation.

The basic idea is that the network interface watches the microprocessor’s accesses to those
regions of memory designated to be queues. Roughly speaking, each read or write to such an area
is compared with other recent accesses to the same area. If the accessed address is within a spec-
ified distance of other recent accesses, it is a treated as a normal memory access. However, if the
access is further away, then the interface triggers a queue operation, and starts a new record of
accesses.

Thus, a write to a new location associated with the tail of a queue causes the previously modified
data to be added to the queue. Similarly, a read to a new location associated with the head of a
queue causes the next item in the queue to be copied or mapped to that address, before the read
request is answered.

This protocol makes no mention of caches, because it is orthogonal to any memory hierarchy
issues, as long as the interface can observe all accesses to queue areas. In particular, detailed anal-
ysis confirms that it functions correctly no matter what write-back, write-through and replacement
policies the cache controller in the microprocessor is using.

A precise specification of the QRAM protocol for queues is given below. We are adopting this
approach for the ControlNet interface on ASNT.

22

QRAM Definition and Example

Definition 1

A queue is a FIFO-ordered list of fixed-size blocks. Methods (i.e. supported operations) are:
enqueue(b): append a new block b to the queue tail.
dequeue(): remove and return the block at the queue head.
probe(): return a copy of the block at the queue head, leaving the queue unchanged.

Comment 2

Conceptually, queue length is unlimited, so enqueue() cannot fail. A dequeue() or probe() on an empty queue returns
a distinguished block value called an idle symbol. Distinct queues can have different block sizes and different idle
symbol.

Comment 3

QRAM is designed for control messages. Control message traffic is defined to be traffic that has in-band control and
status information, i.e., symbols that are significant to both the hardware and the application. The idle symbol is an
inband status indicator. In contrast, data traffic has out-of-band control information, i.., symbols are not significant to
the hardware.

Example 4

The canonical implementation uses one or more pages of RAM, head and tail pointers, and blocks the size of a cache
line. Unlimited queue length is achieved by reallocating the queue as necessary. Cache-lines with a zero in the first
word are idle symbols, making them easy to recognize.

Definition 5
A virtual half-queue (VHQ) is a set of block-sized memory locations in RAM, called the spanning set and a distin-
guished subset of these blocks called the working set.

Example 6
The canonical implementation of a VHQ uses a page of RAM and a one-block working set., represented as an integer
specifying the “working block’s” offset relative to the beginning of the page.

Discussion 7

Half-queues are useful for implementing memory-hierarchy-compatible device interfaces as follows: Hardware rec-
ognizes and responds to accesses in the spanning set. Accesses within the working set cause some normal behavior,
typically specification of device setup information. However, the first access outside the working set triggers an
action, and the creation of a new working set. This is efficient, because the first access outside the working set can
serve as both a trigger and a prefetch or status access.

Definition 8

A virtual queue tail for a queue Q is a virtual half queue with a one-block working set, and the following semantics:
Accesses to the working block behave as normal cached reads and writes with no side-effects. The first access to a
new block within the spanning set causes the current working block to be copied to the tail of the queue, and the
newly accessed block to become the working set.

Definition 9

A virtual queue head for a queue Q is a virtual half queue with a one-block working set, and the following seman-
tics: Accesses to the working block behave as normal cached reads and writes with no side-effects. The first access to
a new block within the spanning set causes a block to be dequeued from Q and moved into that block, and the newly
accessed block to become the working set.

Figure 14
This diagram shows data movement triggered by accesses to virtual queue head and tail.

23

Virtual Queue Head _XXXX_ _ ARAA " — _XXXX_
Cyyyy:'i<&— Working Block YYYY ATV -t—
2227 2227 2227,

BBBB —» BBBB — BBBB
CCCC CCCC cece
3 DDDD DDDD DDDD
Phy81cal EEEE EEEE EEEE
Queue FFFF FFFF FFFF
. GGGG GGGG GGGG
Tall —P — 5SSS
_>
. . RRRR RRRR RRRR
Virtual Queue Tail “55557 -&— Working Block esss l-t— SSSS
TTTT TTTT TTTT
19161014} 19161916/ Uy e
Initial Memory After access on After access on
Configuration block containing block containing
XXXX Uuuu

FIGURE 14. Data movement triggered by accesses to virtual queue head and tail in
the QRAM model.

3.10 I/O Node Subsystem Architecture (Initial Design)

The ASNT I/O Node design effort progressed to completion of the prototype logic design. The
prototype will contain one PowerPC PID7v-603e ball grid array, and one MPC106 chip (rev. 4) to
simplify the interface to memory and I/0. The board supports four 16MByte Sync DRAM DIMM
packages containing a total of 64MBytes, and 512KBytes of Flash Memory. Also included are
three PCI slots, a single UART, and various buffers, adjustable clock drivers and glue logic. Con-
nectors are included to connect this board to a bridge node prototype.

24

Pending layout, the physical form factor of the final ASNT node came under detailed scrutiny, and
several options were considered. A planar connection of the various boards in a supernode is pref-
erable for debugging, cost and simplicity. However, a board-to-board stacking is more compact
and flexible in the long run. Unfortunately, connector pins for board-to-board stacking need to be
quite long to allow clearance for DIMM memory, but long connectors can introduce parasitic cou-
pling between high speed signals. To avoid delaying the progress of the project while this trade-
off was analyzed, it was decided to build a breadboard of the I/O Node to produce working hard-
ware for debug and software development purposes as soon as possible.

During layout, we planned to simulate in Viewlogic those portions of the design which are novel:
the operation of the MPC106 and the SDRAM. Ideally, simultaneous hardware modeling of the
603 and the MPC 106 interface chip is desirable, since the simulation could then exercise real code
samples in a reasonable amount of time. Our available hardware modeler has been used in the past
to hardware model the PowerPC 604, but the cost of expanding it to include the 603 and the 106
was prohibitive. We are therefore investigated using a software functional model of the PowerPC
603 bus interface provided by Synopsys in their Smart Models package. This would allow simu-
lating external bus operations without requiring simulating the execution of actual code. Our lab
Hardware Modeler could then be used to model the MPC106.

We are also acquired an HP E3490A JTAG processor probe to debug the board and code after
assembly. This allowed programming of the flash memory, single stepping of the code, setting of
breakpoints and viewing and altering of internal 603 registers during execution. It was anticipated
that the combination of prefab simulations of untested hardware and the post fab in-circuit debug
capability would allow first-turn success on this portion of the ASNT task.

3.11 Bridge Node Subsystem Architecture (Initial Design)

We chose to incorporate our high-performance encryption and authentication technology in an
encrypting bus bridge between a “Siamesed” pairing of the computational and I/O nodes. Data is
encapsulated in “secure objects” which are encrypted and tagged with cryptographic authentica-
tion codes on the fly as they are transmitted at full bus speeds between the two nodes. The bridge
node contains the data-encrypting hardware on a socketed daughterboard which provides a
straightforward transition from the initial FPGA to the VLSI datapath implementation. The FPGA
prototype implementation of the DES encryption and authentication pipelines demonstrates a
reduced-round version of DES with full performance but low cryptographic strength; the VLSI
version will implement the full number of DES rounds.

We have selected the components for the initial version of the SafetyNet subsystem: Altera
Flex 10K FPGA programmable logic under the control of an embedded processor which performs
initialization and key management. We have selected the Motorola MPC860T as the embedded
processor. Our selection of this part stems from its code-compatibility with the node processors
and its ability to provide the 10/100-BaseT network support required for the physical implemen-
tation of the SafetyNet security network.

25

We have developed a new modular planar packaging scheme for the supernode (i.e., the aggregate
of the computational, I/O, and bridge nodes.) The physical design of the bridge node, based on a
6U Eurocard form factor, provides identical physical and electrical interfaces to both the compu-
tational and 1/O nodes, based on a 3U Eurocard form factor. This symmetry allows us to replace I/
O nodes with computational nodes or vice versa to fit the desired computational mix. This planar
supernode is plugged into a physical-network fabric which can be constructed in either a modular
stacking or backplane arrangement.

One problem that has historically plagued experimental architectural designs is the hazard of
obsolescence of CPU and memory components during the design cycle. We have addressed this
problem by anticipating the necessity of modular replacement and upgrade as system require-
ments change and technology advances. In addition to the use of socketed SDRAM modules,
allowing up to 256MB per node, our design supports ZIF-socketed processor-cache modules to
allow the latest processors to be installed in existing nodes. The design supports PowerPC 603e,
604e, and 750 (G3) processors. The G3 processor supports a dedicated bus supporting up to IMB
of high-speed cache, which can substantially reduce the contention for the system bus by the net-
work and computational operations. 1998 versions of the 750 processor are anticipated to be the
first production processor to employ IBM’s copper-interconnect technology, nearly doubling the
current (266MHz) processor frequency, keeping our design competitive in system performance.

We have partitioned the design to limit the functions implemented purely in hardware to those
with substantial performance paybacks. Our use of an embedded processor in the bridge node will
provide a large number of services to both the bridge-node logic and the computational and I/O
nodes. Miscellaneous services include delivery of bootstrap code and node identity, and gated
communications with the security node. In addition to the DMA encryption pipeline, the bridge
node logic provides a standard electrical and programmatic interface for the computational and I/
O nodes to access their dedicated networks. The ASNT network interface is a scalable extension
of the PDSS interface, which will maintain the (sub-microsecond) low latencies of PDSS while
supporting larger systems. The interface logic is implemented by a combination of FPGA logic
and SRAM-based descriptor tables maintained by the bridge node processor. Each node has sepa-
rate interface logic, allowing for independent operation of the nodes unless an internode block
transfer is in progress. The bridge node board interface also provides a buffered datapath from the
computational and I/O node busses to a module containing the physical-link hardware interface
for the respective node networks. This module can be substituted as required for different physical
interconnects, e.g., short-run parallel copper or longer-run optical fiber technologies.

The I/O node must provide a flexible interface to a widely supported interface standard. We have
decided to support PCI interface to cards in either 3U or 6U CompactPCI form factors. Interfaces
not currently supported in this form factor, e.g., Myrinet, can be supported via commercially
available adaptor boards, in 6U format, for pairs of PCI Mezzanine Card (PMC) cards, and also
for desktop-PCI cards. The whole assemblage of ASNT supernodes (composed of computational,
I/O, and bridge nodes) together with PCI interfaces, can be mounted in standard EIA 19-inch
racks, 16 supernodes per 6U-height chassis. This arrangement allows for single racks to contain

26

-

b e

vertically-intermixed boxes of supernodes with disk arrays, data acquisition, or other voluminous
peripheral resources. Alternatively, a modular stacking physical-link interconnect fabric would be
suitable for smaller and more varied configurations.

An unstructured approach to the bridge-node hardware design would yield a hard-to-debug design
with excessive wiring and pincount demands. We have designed a flexible command bus for link-
ing the major autonomous bridge-node components, which is instantiated in three independent
versions to interface to the computational and I/O network interfaces as well as the bridge-node
core components.

3.12 Conference Papers Submitted and Accepted

3.12.1 “Lessons from Three Generations of Embedded Supercomputers”

Authors J. Koller, J. Block, J. Draper, C. Lacour, C. Steele. Paper was presented at the 2nd Inter-
national Workshop on Embedded HPC Systems and Applications, IPPS, ‘97, Geneva, Switzer-
land, April 1997.

3.12.2 “Routing in Bidirectional k-ary n-cubes with Red Rover Algorithm”

Authors Jeff Draper and Fabrizio Petrini. Appeared in the Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, June 30,
1997.

3.12.3 “The Red Rover Algorithm for Deadlock-Free Routing on Bidirectional Rings”
Author Jeff Draper. Appeared in the Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, August 1996, pp. 345-354.

3.12.4 “A Fully Pipelined, 700 MBytes/s DES Encryption Core”
Authors Thn Kim, Craig S. Steele, Jefferey G. Koller. Appeared in the Proceedings of the Ninth
Great Lakes Symposium on VLSI, March 1999, pp. 386-387.

4.0 Results - Design and Implementation

4.1 Packaging Architecture

The original concept for the ASNT system packaging was to make heavy use of stacked boards,
so that each supernode was a sandwich of an IO node, a Bridge node and a Compute node. How-
ever, this has grown increasingly problematic, because:

« Stacked boards provide little debugging access.
« Board area requirements for the three parts of the sandwich are different.
« Multiple stacking connectors are required to achieve the signal counts required.

27

We have therefore modified our approach to use a planar supernode, as shown in Figure 16. Form

Node T I —
T :

Bridge

Node Side View

FIGURE 15. Original stacked system
packaging concept (above) and new
planar concept (right).

factors conform to the popular new Compact PCI (cPCI) specification (http:/fwww.picmg.org/
acompactpci.htm), which is a ruggedized (and in many ways superior) version of the PCI specifi-
cation targeted at embedded applications. Highlights of the new design are:

* All connectors are high-density, low-crosstalk cPCI connectors.

e The IO and Compute nodes each meet the cPCI 3U form factor.

* The Bridge node and router board together meet the cPCI 6U form factor.

* The supernode as a whole has the form factor of two 6U cards.

¢ Memory DIMM’s are mounted flat on the boards.

e The IO node has a cPCI extender socket, carrying a standard cPCI bus, to allow attachment
of COTS peripheral boards.

* The connectors to the bridge node carry full 64-bit wide PowerPC 60X busses from the IO
and Compute nodes.

We anticipate that the new form factor will considerably simplify the system issues, Figure 15., at
the cost of slightly lower density. The new design now calls for a backplane, providing more reli-
able interconnect than cables.

28

Pawe™Z 750

+1.2 Cache Clont
ihial Modle

-------- ZIF Socket

o INORIE L g Tla

g

o (e (] -
168-pin (SIDRAM DIMM | MPC |
(backside mount. H-degree socket) § | 860

standsaed)

{Compact PCI1

IO Node

168-pin (SIIRAM DIMM
- (backside mount, 90-degree socker)

FlexiOK50
240 CFP

FIGURE 16. Details of new planar design for ASNT supernode.

4.2 System Chassis
The system chassis has been defined. It consists of three separate modules: A base containing
power supplies and fans, a main module containing the supernodes, and a peripheral module con-

taining PCI cards, disk drives and other peripherals. The peripheral module contains its own fans
and power.

Advantages of this design are:

[]

Modularity is less complex.

It affords easier access during debugging.

Staged implementation is possible, with the main module being implemented first.
It allows multiple classes of peripheral module.

One can solve main module power and thermal design, since it is fixed.

The overall design is more rugged.

There is one slight disadvantage:

With the CPCI peripheral connectors on the right side of the IO Node cards, one cannot
remove whole or partial supernode without first removing the peripheral module.

29

The combination of base, main and peripheral modules is called an ASNT supermodule.See Fig-

FIGURE 17. Three modules of ASNT
O O supermodule.

ure 17.

30

Power and Ground

The top of the base has a set of protruding alignment pins, which serve as power connections to
the main module. Power and ground in the main module are routed through substantial rails,
orthogonal to the supernodes, at the top and bottom. Conductive clamps on the rails make contact
with large pads on the cards making up the supernode, to provide stiff power supplies at 5V and
3.3V. See Figure 18. The 12V supply is through the CompactPCI connectors and the 3.3 -to-2.5V
converters are on each board as needed. See Figure 18.

33 5 33 5 GND33 5
an men SURE S BEEE Bun mmn g T
' CN

FIGURE 18. Power and
ground connections in
main module.

NET| | BN

DN

GND GND GND33 5

SIDE VIEW END VIEW

TBD

TOP VIEW CLAMP DETAIL

Main Module

The main module is partitioned by a communication plane. The Bridge Nodes plug into the front,
the routing hardware into back. The communication plane is passive.

Supernodes are pitched at double the CPCI slot width in this version of ASNT. This allows con-
nectors to routers and supernodes to alternate. There are eight supernodes per main case.

Form Factor
Dimensions are set as follows. Left, right, etc. refer to the view in Figure 17.

Main module size is determined by the cPCI spec, plus 0.5 inches on top, bottom and left. The
right edge of the supernode is flush with right side. The peripheral module is one 3U card long
plus 0.5 inches on the right side. Width is set at 10 x 2 x the cPCI slot width.

Base: 16”W x 20.93"L x 4”H
Main: 16”W x 20.93”L x 10.19”H
Periph: 16”"W x 7.34” L x 14.19”H

31

Thermal

A worst-case power calculation for the 10 node shows 25W, which is probably a factor of 2 too
pessimistic due to activity overestimation. A more accurate calculation via Excel spreadsheet
gives 9.7W typical, 11.2W Max, plus 2.1W max for the 3.3V to 2.5V converter.

Assuming other nodes are similar predicts approximately 50W typical, 100W max per supernode,
and thus 800W max for the main module.

Peripheral Module Contents:

* 8 CPCI to PMC adaptors

* 8 PMC SCSI Disk Controllers
* 8 SCSI Disks (2GB each?)

* 2 Lan Cards

* Power supplies

* Fans

The cPCI connectors align with the mating connectors on main module.
Note

The power pad distribution pads where implemented on the I/O node boards, but the clamping
mechanisms were not. Off the shelf CPCI power supplies plug onto the backplane, which distrib-
utes the power through the CPCI connectors. The solution was simple and serviceable.

4.3 I/0 Node Design

The 10 node design previously in preparation was a prototype, designed for convenient stand-
alone debugging and experimentation. It therefore included a UART for serial 10, three PCI slots
for device attachment, an on-board clock generator, an additional connector for convenient logic
analyzer attachment, and a power socket. The production IO node for the final system would
require a trimmed down version of this prototype, without most of these extras.

We have now succeeded in separating off these features onto a separate card, which plugs into a
bona fide production IO node. We were able to do this because in the new packaging architecture
the entire PowerPC processor bus is brought out on the connector to the bridge node. As shown in
Figure 17, the card carrying the extras simply plugs into the bridge node connector during debug-
ging, and simultaneously acts as a stub for the bridge node.

32

To provide the PCI slots, we similarly plug a CompactPCI-to-PCI adaptor board into the single
CompactPCI connector on the opposite edge of the board.

Logic
Analyzer
Header
M
PCI
Bridge Slots
Node .
Stacking
Connector
FIGURE 19. Prototype 10
node design (top) and new
CompactPCI-compliant
Bridge ' production version with
Node DIMM’s on extension cards (bottom)
Connector
/ / rear
Logic —’
An%l zer r
Header PCI | | |BC
S Slots
6034 106 U
Stub IO Node COTS PCI
Board Board

4.4 Compute Node Design

The redesign to the planar Compact PCI with mirror image ports for both Compute and I/O Node
subsystems makes the design of the compute node unnecessary for the first functionality. We also
chose to turn that design at the last possible moment to take advantage the latest, fastest processor.
Until that time the I/O node serves as a functional Compute node.

4.5 Bridge Node Details

Details of the many interfaces in the Bridge Node are shown in Figure 20. In particular, we have
selected IEEE1394 Firewire as the SafetyNet network.

To improve the design, we have adopted a uniform structure for the various control and data paths
between the bridge node MPC860 CPU and the network/encryption logic. This has been formal-
ized in the definition and documentation of a so-called Bridge Node Command Bus.

There are three command busses on each Bridge Node: one 32b version connecting the MPC860
bus and the encryption datapath chip with the address-bus interfaces of the computational and
data nodes, and two 16b versions connecting the address-bus interfaces with their respective net-
work physical interfaces. The 16b command busses share the organization and protocol of the 32b
bus, but have lower capacity since they are not the primary mechanism for data transport in their
subsystems. The physical interfaces have a direct attachment to their respective node PowerPC
60X data busses, and also receive the stored command output data from their respective 32Kx32b

33

86/L1/6

34

_] €31993puq
apo uejdioo]I/matalon(y apoN andwo)
PON OI 9pON 93pug LNSV
[1 [I
— ! 0T HENOI _
ADX ADX ADX ADX ADX ADX ADX ADX
. yiedejeq uoneonusyiny 29 uondAisug S9Q
81 81
[o1u0) v9 Eed v9 BiEd j01u0D)
[43 [43
SS2IppVY SSIppY
L - ¥9 sng puewwo)) #8pu ¥9
— ereq soul] Sy ap O °spuyg vieq
seul] 0§ saulf 0§
mﬂm xoo OUOZ O“— —HU\UU< Un: thumDu#\ —uU\U@{ mﬂm VAOG OUOZ DuDQEOU
I / sng (098 sng / |
/ Nd puD /
1IN0y A Inoy
AND paiol1s * y QND pa10IS
WVAS y NWVYS
Y 0 Y
65 5 ar 65
PPVERA | ng 09 gt wiEo] g | PPVeRd
19
1 N NO YN €€ yoel 1PN ND P
i dN 91 INVIA i S%%H
ered 098 OdN (saury ssaippe)
(sauif ssaippe) (saul] osiw) (saulj astw) ’ z€
€ 6¢ * 6¢ Ble(g 1S9
eled "1ssg sng pui) yury sng pwpH
< PN OI ¥00[D [eoiskyd IBNNO
] 0S6 pocl I
| L
me* 103X
aorpIRU] [BOISAUd 19N OI $90BJI91U] [BIISAYJ 19N BlR(% 12N dIND
19N 410588

1N O1 1°N Ble(g

1PN dNO

SRAMs. The 16b physical-interface and the 32b bridge-node command busses connected to each
address-bus interface FPGA can operate independently and concurrently.

The bus was custom designed to support the kinds of transactions we have found useful in net-
work interface operation. Neither the 60X bus nor the PCI bus could meet our needs, although our
design has some features of both.

The bus signal functional groups specify bus master (SRC), target device (DST), address or data
(AD), function (FCN), data content size (SIZ), and negative acknowledgment (RTRY_).

Bus Operation Overview

Timing All signals are synchronously clocked at the MPC860 bus clock frequency, i.e., either 25
or 33MHz. The compute- and I/O-node PowerPC 60X busses are operated at twice this frequency
and twice the datapath width, so some internal buffering is required to match transfer rates.

Multiplexed Address and Data Lines The address and data lines are multiplexed to reduce the pin
requirements for the Flex 10K packages implementing the bus interface logic. This adds latency to
data transfers using the command busses, but does not add significant latency to the triggering of
the network or encrypting-bridge transfers, since the command busses provide only an address
trigger to separate primary datapath elements.

Sequential Command and Data Transfers The command group of signals (AD, FCN, SRC, DST,
SIZ) are driven in the first clock (address phase, denoted A) of a transaction, with one, four, or
eight data clock periods following to constitute the data phase of the transaction. The SIZ encod-
ing includes a zero-byte data-transfer size, but for timing simplicity there is always at least one

data-phase clock period regardless of whether the AD lines are used. The data phases are denoted
as DO through D7.

Data-Phase Termination The master may terminate the transfer, either in the specified number of
data clocks or prematurely, by signalling a special value, Next_Idle (encoded as “all ones,” in the
FCN field during any data phase. The master ceases driving the bus lines on the cycle following
its assertion of Next_Idle. Next_Idle is also the field value of idle state of the bus, maintained by
pullup resistors.

Target Device Acknowledgment Target devices do not positively acknowledge a transfer. Target
devices may assert a RETRY (RTRY_) signal in response to any phase of bus master’s command.
This notifies the master that the transaction has failed and that it may need to retain enough state
to retry the request later. The RETRY signal may be asserted on the clock after the command is
issued and in the clocks following each data-phase clock. The RETRY signal indicates a rejection
of the prior clock’s command or datum, so this acknowledgment is skewed one clock later than
the corresponding phase of the bus master’s transfer.

Arbitration Each bus-attached device has a BR_/BG_ request interface to a central arbiter for that
bus.

Device Maps

Each of the three command busses has a distinct enumeration of the attached devices, which is
used to specify the SRC and DST signals for a transaction.

Each-of the three bus interface FPGAs can serve as a destination for an access to its internal stor-
age, or as a conduit to the “attached” address space of a PowerPC bus. See Table 3.

35

TABLE 3. Bridge Command Bus Device Map

Device Name Encoding Mastering? Notes
Compute Node Interface 0b000 Master+Target
Compute Node 60X Bus 0b001 Target-Only 60X bus cannot initiate transfer
I/O Node Interface 0b010 Master+Target
I/0O Node 60X Bus 0b011 Target-Only 60X bus cannot initiate transfer
Bridge Node Interface 0b100 Master+Target
Bridge Node 860 Bus 0Ob101 Master+Target
Encryption Datapath 0b110 Master+Target

Bus Functions

The bus supports normal read or write operations, as well as a “split read” operation in which the
master does not wait for the requested data to be returned, and the target returns the data asyn-
chronously at some later time. The type of transaction is encoded in the Name field as shown
below. See Table 4.

TABLE 4. Function Encodings

Name Encoding Notes
Write 0b10 AD contains read address during A clock
AD contains write data during DO-7
Read_Immediate 0b00 AD contains read address during A clock
AD contains read data during DO-7
Read_Split 0b01 AD contains read address during A clock

AD contains return address during DO
Next_Idle 0Obl1 Transaction is ending or has ended

Driven only during the last data-phase cycle

4.6 DES Operational Results

To provide on-the-fly encryption, ASNT exploits the fact that the Data Encryption Standard
(DES) encryption algorithm is amenable to simple hardware implementation. Several commercial
and custom chips are available, and security agencies presumably have others which are not pub-
licized. The complete algorithm involves 16 similar repetitions of a more primitive scrambling
operation called a DES round. Existing chips implement one round, plus a controller to cycle data
through it. For many applications, this is adequate, and higher throughput can be achieved by
placing several such units in parallel, at a cost of board complexity. Because of our high band-
width requirements, ASNT has designed an alternative implementation, a fully-pipelined custom
VLSI chip able to perform 56-bit DES en/decryption on 64-bit words at 87.5 MHz, i.e. 700MB/s.
The chip is expected to be submitted for fabrication on November 11th.

The DES encryption and decryption runs at bus speeds (nominally 66MHz) when transferring
data between the 64b-wide node busses. Operating in electronic code book (ECB) mode, we can
pipeline the 16-round DES implementation to achieve adequate throughput. The main steps in

36

each round involve merging data with a key, permuting 64 bits, and repeatedly substituting over-
lapping 6-bit fields with 4-bit fields.

Encryption provides privacy. Equally desirable is authentication: the ability to detect accidental or
intentional modification of data. Widely used cryptographic message authentication codes
(MACs) contain cyclic data dependencies that severely limit performance of hardware implemen-
tations. However, our DES pipeline core enables implementation of a high-performance version
of a newer authentication code, the XOR MAC, which is amenable to pipelined and parallel
implementations. The DES version of the XOR MAC splits each 64 bit word of a message into
two, concatenates each half to a 32-bit counter, DES-encrypts the results, and then forms a cumu-
Jative XOR over the entire message. Authentication therefore requires twice as many DES opera-
tions as encryption.

For simultancous encryption and authentication code computation, we have the option of either
implementing three distinct DES pipelines, or performing a three-way interleave of encryption
and authentication computations. To allow such interleaving, our DES pipeline implementation
carries the (possibly different) DES keys through the pipeline stages along with the intermediate
data.

Circuit description

The inherent routing complexity of DES can make silicon area utilization very poor especially for
a high-throughput, fully pipelined implementation. Other known DES chips attempt to reduce the
routing complexity by using an equivalent representation of DES implementable with reduced
internal/external bus widths at the expense of data throughput. However, progress in CMOS (par-
ticularly the number of metal layers) now makes it possible to extend the number of I/O ports and
internal data buses at reasonable cost.

To understand the feasibility of implementing a fully pipelined DES algorithm we experimented
with four versions of the basic DES round: FPGA, VLSI synthesis, and two custom hand layouts
(Table 5). The block diagram is the same for all versions.

The FPGA version is implemented using an Altera EPF10K100GC503-3DX device with compi-
Jation set at fast global logic synthesis and maximum optimization for speed. Although it showed
performance competitive with a commercial XC6216 implementation from Xilinx, the single
round consumed 30% of the logic cells of this $900 device and was too slow to meet our 66MHz
requirement.

The synthesized version used the Cascade Epoch placement and route tool. The same VHDL code
as the FPGA version was fed into Epoch for synthesis, placement, and route, but it produces too
large a silicon requirement for a reasonable cost, mostly due to the complex routing.

For the custom hardware implementations, one version is implemented using the Hewlett Packard
HP14b process from MOSIS, which provides 1 poly and 3 metals and minimum feature size
0.6mm. The other uses the HP10b process (same vendor,) with 1 poly and 4 metal layers and min-
imum feature size 0.4mm. Both led to fabricatable implementations, but the one extra metal layer
and advanced device technology of the latter process provided a more than 4-fold savings in sili-
con area, at a speed exceeding our application requirements.

We sought to implement DES with a minimal number of gates to relieve the enormous area
requirements of a fully pipelined DES. Figure 1 shows the circuit elements for each functional
block. Each round requires two XOR blocks, one key shifting block, one pipeline register block,

37

and one set of “Substitution BOXes”. Pass transistor logic is used to implement all the circuit ele-
ments except the S-BOX to minimize the number of transistors. Key shifting is implemented by
multiplexing left-shifted and right shifted key input (shift is I or 2 bits) to exploit bit parallelism
and reduce shifting delay. We can keep the number of transistors used for a round below 9000 and
reduce the area by implementing the pipeline register using an array of pass transistors instead of
a conventional register. In addition to the area saving, we can save the register setup and hold
times required for a regular pipeline register.

Pipelining is effected by propagating signals of the same input block over 2 rounds every clock
cycle and clocking alternate rounds with different clock phases. The delay budget of 7.5ns per
round for 66MHz operation was carefully managed to make this possible. The critical path in a
round comprises propagation through the key generation, 48XOR, S-BOX, and 32XOR blocks.
The S-BOX is the most critical delay element and also occupies more than 30% of the whole chip
area. Figure 21(d) shows our optimization for S-BOX design. Each S-BOX consists of 8 blocks of
256-bit ROM with row and column decoders driven by different inputs in parallel. The S-BOX
memory cells are implemented using 1 transistor per bit. The number of rows is limited to 4 to
reduce bit line capacitance and alleviate the need for sense amplifiers.

The final layout was performed using Berkeley Magic, and MOSIS HP10b design rules. The
physical dimension of the layout is 64.2mm x 241.4mm for an S-BOX, 0.52 x 0.46mm for a round
and 2.5mm x 2.5mm for the whole 16 rounds. Functionality was checked using Berkeley IRSIM
and timing was measured using Epic Powermill. The S-BOX showed less than 1.8ns of dclay
without output loading and a round showed less than 7ns of delay, leading to a maximum operat-
ing frequency of around 85MHz. Power dissipation for the whole core is 115mW.

Conclusions and Status

We have shown that a fully pipelined implementation of 56-bit DES, with throughput exceeding
66MHz 64-bit PCI bandwidth, is technically and economically feasible, provided one uses at least
a 4-metal process. In prototype quantities through MOSIS, chip price is approximately $205 and
the chip was delivered in March ‘99. Volume production, say for widespread use in PCI applica-
tions, could result in production costs well under $10 per chip.This is further evidence that 56-bit
DES, while adequate for our application, is becoming more and more vulnerable to cracking.

38

(@)

2 to 4 decoder

0
sls6

1
2 -
3

clk
q
(b) (©
i 1 L 0 0 L 0 0
55 A
CR Y + It
= Wl o

FIGURE 21. Circuit elements schematic ((a) Key shift, (b) XOR, (c) Pipeline register, (d) S-

BOX (16 control signals generated by 4 x 4 array of NOR’s)

TABLE 5. Comparison of implementation of one DES round

Implementation Size (mm x mm) | Clock Freq.(MHz) T}E;j’[g?;g“t

FPGA (FPGA) - 24.4 260
XC6216 (FPGA) 23 200
Synthesis (Cascade) 3.77 x 2.64 - -

HP14b (0.6um, 3 metals) 1.71 x 1.43 58 3712
HP10b (0.4um, 4 metals) 0.52 x 0.46 87.5 5600
VMS110 [VLSI Technology] | - 40 280
VMO007 [VLSI Technology] * | - 32 1600

*Fastest commercial chip

39

4.7 SafetyNet

One emerging networking technology that was attractive was the IEEE 1394 (“Firewire™) stan-
dard, which became popular for peripheral attachments between consumer devices. With a perfor-
mance of 400 Mb/sec, it was a little too slow for the major ASNT networks. However, its
sophisticated shared global address-space protocol and built-in arbitration and configuration
mechanisms, and the fact that it is extremely convenient (a hot-pluggable serial bus), made it very
attractive for use in system management applications.

We chose Firewire instead of Ethernet for the secure SafetyNet network. Chip sets became avail-
able in 3Q98, from Texas Instruments among others. The Firewire software interfaces were also
considerably simpler than Ethernet interfaces, and the performance was better.

In keeping with the modularity/upgradeability designed throughout ASNT, the SafetyNet inter-
face implemented with Firewire was moved to a mezzanine card. The two-chip chipset with the
user I/O connectors, remote isolated powersources and an FPGA, containing the 860 bus interface
and also the 860 Command Bus implementation (described above) are all located there.

4.8 Router Boards

In place of the PDSS and RIF router execution, a simple, fast, FPGA based, 1-D wormhole router
scheme was designed for the I/0 net and the multiplexed Command and Data Nets. It has separate
passive backplanes for the router to router connections for each type of net. Data grams pass
through each router between the source and destination, but are interpreted only by the source and
destination, the other hops merely pass the data on at the router level.

4.9 System Clock

Supernodes are interconnected by four physical networks. Three of the networks are synchronous
requiring either a system wide clock (conceptually simple) or clock recovery across the networks
(more involved).

The system clock was designed to be 33MHz, and this frequency is doubled on each node using
one or more Motorola MPC950 clock drivers. Skew needs to be controlled, e.g., by matching the
lengths of clock lines to the individual backplane slots. It is relatively easy to meet the Compact
PCI maximum-skew requirement of 2ns.

Because the clocks pass through several levels of buffering, jitter was a potential issue. Maximum
jitter acceptable was: 150ps(PowerPC 603e, 740, 750) short & long term combined; 150pscycle
to cycle jitter (PowerPC 604e).

There were two clock distribution options:

Central (Broadcast a clock signal from a central point.)

Advantages

* All boards are in complete synch, within chip to chip variation, without passive components

40

for trace delay tuning.

+ Most SMA connectors are on the (back side of the) backplane for easy configurability.

« Clock distribution could issue from a ninth slot with the added benefit of removing active
logic from the backplane.

« Coax lengths may all be the same length for this topology. However, if necessary, they make a
predictable easily modifiable delay line at nearly 3ns per foot.

« Jitter should be acceptable up to 256 nodes, never more than two MPC950s from the source.

Disadvantages

 Nonstandard backplane, requires multiple runs of coax cable.

+ Many unused SMA connectors on some boards.

+ Allows single point of failure on loss of clock.

" Limited to 256 nodes by clock chip or 64 nodes by connectorization plan.

Distributed (Reconstruct system area network clocking information to synchronize all systems.
Advantages

« Clocking information enters the node boards only, nothing on the backplanes

« Passive backplane with connectors only.

+ ‘Indefinitely’ scalable at least in theory.

« Most elegant (possible research topic) solution.Typical jitter should be better than this, and
newer clock drivers will also likely be better, so the risk is not a significant concern.

Disadvantages

« Nodes require local clocking for boot and automatic drive to synchronization.
» Stability may be problematic.
e Research topic in the making.

We elected to use a central clock distribution scheme on this version of ASNT, because, though
less elegant, it is more proven. However, the worst-case jitter estimates show that in this scheme
we are right on the borderline of the 150ps requirement for the microprocessor. After this design
work, we decided to implement the central distribution scheme with Positive ECL drivers (PECL)
which give the following advantages:

« balanced drive signals to reduce EMI/RFI emissions and interference susceptibility.

« twisted pair distribution between supernode modules and simple trace distribution within the
supernode, between bridge, routers, i/o nodes and compute nodes through CPCI connectors.

« elimination of all but the one stage of PLL, reducing jitter to a minimum.

4.10 System Bootstrap Procedure |
We defined the bootstrap procedures for the ASNT hardware and software after power-on and
other resets as follows:

Bridge CPU Bootstrap

The processor chosen for the bridge node (MPC860) is programmed via pull-up resistors
(MPC860UM Section 4.3.1) to boot from a single byte-wide FLASH ROM, without the need for
external volatile-SRAM FPGAs to be programmed. A 3.3V 40-pin TSOP FLASH part, the AMD
Am29LVOO08B, is used, giving a footprint that will also accept 2-16Mb parts. The large FLASH
ROM holds mostly FPGA initialization data, plus a small amount of boot code.

41

The CPU has two boot modes: debug and normal. Debug mode is used during early hardware
checkout, when the bridge node is attached to a debugging board. Later, with validated hardware
and boot code, the bridge node boots from its FLASH ROM without the debugging system.

Debug-Mode Bootstrap The FLASH is soldered to the bridge node PCB unprogrammed. For ini-
tial programming of the FLASH, the MPC860 is booted via its BDM debug port, a feature of this
embedded CPU. The CPU fetches primary boot code from its debug “host” via this port, initial-
izes and tests DRAM, initialize the SafetyNet IEEE 1394 interface, and copies a block of second-
ary boot code from the SafetyNet interface to bridge-node DRAM. The secondary code performs
further hardware tests, and programs the FPGA’s. As the primary and secondary bootstrap code
stabilizes, it will be modified to copy itself into part of the FLASH ROM, where it will be used
during “normal” bootstrap mode.

Normal-Mode Bootstrap When not attached to a BDM-port hardware debugger, the bridge node
boots out of the FLASH, which contains:

e Primary boot code — initializing the CPU, DRAM, and 1394 SafetyNet interface,
* Secondary boot code - initializing the SRAM FPGAs (optional),
* Tertiary boot code — containing the MPC860 embedded control kernel (optional)

* External boot code — primary bootstrap code for the computational or I/O nodes (optional).

The optional segments may also be loaded from the security host via SafetyNet. Still, booting a
large system is faster with stable data in ROM rather than fetched from a single security node.

SRAM-based FPGA Programming The primary job of the secondary bootstrap code is to program
the volatile-SRAM FPGAss of the supernode. The programming data is either a direct image of the
programming SRAM of the FPGA’s, or a more compact representation called JAM.

Computational- and 10-Node Bootstrap

The computational and I/O nodes derive their clocks, FPGA initialization (if any), and reset sig-
nals from the bridge node. By releasing the memory controller (MPC106) from reset while hold-
ing the CPU in reset, one can program the I/O node’s MPC106 configuration registers and
FLASH ROM from the bridge node, allowing in-system alteration of the I/O node primary boot-
strap. We can additionally preload secondary boot code into DRAM. The compute note boot pro-
cedure is similar.

1/O Node CPLD and FLASH Programming The /O Node has one programmable logic device
(CPLD), one 0.5 MB Flash memory (8 bits wide), and the MPC106 system-integration chip. The
CPLD is programmed in-circuit via a JTAG port at board assembly time. The FLASH ROM is ini-
tially blank, and is programmed via an HP processor probe, or by the bridge node. The 106 is
functional coming out of reset, and is programmed by the CPU.

The I/O node thus also has two boot modes: “programming” and “normal.” In programming
mode, the 106 is brought out of reset but the 603 is not. In normal mode, both are brought out of
reset simultaneously.

CPLD Amongst other things, the non-volatile Cypress CPLD performs address decode for ROM
space, buffers data lines from ROM, and integrates reset sources. The board is therefore not func-
tional until it is programmed. Programming is via a dedicated JTAG connector on the IO node,
using a vendor-supplied programming device (plugs into a PC).

42

FLASH The flash ROM is writable from the bus once the MPC106 is brought out of reset. The
CPU boots out of one internal bank of the ROM. With the CPU in reset, an initially blank ROM
can be programmed either by another bus master, e.g., the bridge node, or by the HP processor
probe. Each byte in the flash can be programmed by first writing 3 control words to fixed ROM
addresses, then writing the byte.

RESET The order in which devices emerge from reset is determined by the CPLD code. The pro-
cessor probe needs to be able to put the CPU in reset independent of the rest of the system, so it
has its own reset line to the processor. The CPU enters reset if either the probe or the bridge
asserts reset.

4.11 Generic Associative Lookup Module

We have created, tested and optimized a VHDL implementation of the associative lookup module
described briefly in the Theory and Initial Design chapter. The design has been synthesized suc-
cessfully to an Altera FPGA. The module is a TLB controller that is to be instantiated in several
places in the ASNT network interface. One can think of it as a general associative lookup mecha-
nism. It is used, e.g., in the following places:

1. Translating network addresses into route information.
2. Looking up the receiving process using the ID's of incoming messages.

3. Translating virtual memory addresses in network packets during remote memory operations.

Fast associative lookup allows one to use virtual names and addresses during communication
instead of physical names and addresses, without significantly sacrificing performance. This
enhances convenience, and makes user-level access to the network interface practical.

The basic idea is relatively simple. The module has an N-bit input register, an M-bit output regis-
ter, and an input control signal called LookUp. It is invoked by placing an N-bit "tag" value in the
input register and asserting LookUp. The module then searches its internal registers and memory
for the M-bit data value associated with that tag, places the result in the output register, and asserts
a Ready signal.

There are many ways of implementing this, ranging from a direct-mapped register file to a purely
software version. However, we want to achieve two things:

1. The design must be very fast for the common case, which is when the same tag is applied
multiple times in succession, or a small number of tags is used.

2. We must be able to implement it in stages, i.e., gradually migrate a mostly-software imple-
mentation into a hardware-supported version.

The concept is shown in Figure 22, repeated here for convenience. The most common case is han-
dled by recording the last tag used in a "tag register" associated with the output register. If the new
input value matches this, we immediately drive Ready, since the output register already contains
the right value.

43

NOT-PRESENT
INTERRUPT, to CPU

Off-chip hash table
HASH- in DRAM
TABLE
ENGINE

On- or off-chip hash-
Y table engine

ﬂ
e
=~
c
1

I

o

e

13

Z.
=
®

-

®
9.
7

3
~

w

continue
default
abort
wait

WRITE

V4
=~
(¢
(]
]
=
-
-«
2
s
(-]
172]
5
(<]
<]
o
=
[¢°]

A\ 4

AR

CACHE fad | ACTIVE]

CTLR

i

FIGURE 22. General-purpose associative lookup hardware.

Active value in register

v

TAG VALUE

READ

’1 T —

CONTINUE

If the tags are different, we then look up the new tag in a small LRU cache within the module. If
that misses, we compute a hash value on the tag, and look it up in a table in external DRAM.
Finally, if that misses too, we stall and interrupt the microprocessor.

A valuable property of this architecture is that one can implement as many of these stages as onc
has time for. For instance, a first implementation could have just the tag register, and if that
misses, one could immediately interrupt the microprocessor. There are also variations of differing
complexity and performance, such as comparing against the tag register and performing the cache
lookup concurrently. One can also be more or less aggressive with the type of cache.

We sought a parameterized, modular design for this system, applicable for N and M being any
power of two. We assume N>1. The machine for actually reading from DRAM is processor
dependent, and is not part of the lookup module itself. The design does include the hash code gen-
erator, and assumes it gets OR'ed with a base address to get the DRAM address to fetch. The hash
code algorithm used was invented by IBM and used in the PowerPC, and is well described in the
PowerPC manual.

A global invalidate signal is also provided, so the system can invalidate the internal cache and out-
put register if the mapping is changed. The hardware implementation of the LRU algorithm is
adapted from microprocessor cache designs.

Our design went through several iterations, since the large comparators in a naive implementation
are rather slow in an FPGA. We targeted SOMHz on existing FPGA’s, with the anticipation that

process improvements would allow us to reach 66MHz on the next generation of parts. Three
kinds of modifications were necessary. States with excessively complicated output or next-state
logic were divided to meet timing requirements. Timing critical paths were then redesigned using
the Altera graphic design entry tool to create a gate level structural design, with better perfor-
mance than was achievable with synthesis of a behavioral design. Finally, exploiting the division
of states, state registers were inserted between states as needed, to pipeline the logic.

The design was comprehensively tested using simulation. The largest anticipated version, with a
16-entry cache, 10-bit tag field and 64-bit of physical address field, worked as expected up to
56.17MHz with speed optimization (17.8 ns clock period). The design fitted in a $200 Altera
EPF10K40RC208-3 device, using 79 input pins and 66 output pins. Memory utilization was 6%,
Jogic cell utilization was 49%. However, /O pin and embedded cell utilization was 98% and
100% respectively, so Altera recommends using a bigger device.

This design will serve as the baseline for the various instantations of the lookup module in the net-
work interfaces. The behavioral description is also synthesizable directly into silicon via the Cas-
cade Epoch tools, should the need arise.

4.12 Photo Gallery
A presentation block diagram (Figure 23) shows the supernode in a pcb and backplane break-
down. The Safety-Net interface is labeled Firewire and is shown obscured as it is implemented on
the back of the bridge node board. Routers attach through their own unique backplanes, one is the
1/O network and one is the multiplexed Command and Data network

5

CPCI Backplanes

FIGURE 23. ASNT Supernode Block Diagram
6/22/2000

45

Figure 24. shows the printed circuit board implementation of the previous block diagram. The
DES mezzanine board is shown in place with the PGA pins of the DES VLSI just visible in the
center of the photo. The Safety-Net interface implemented with Firewire is shown below since its
actual position is on the back side of the bridge node in the center.

Compute Node

10 Node

DES Mezz
Firewire Mezz

Bridge Node

Figure 25. is a close-up of the IO Node. The power input pad scheme is clearly visible as are the
CPLD programming and processor background debug connectors.

PPC 603e
CPCI Conn

MPC 106

FIGURE 25. ASNT I/O Node Detail Power Pads

46

Finally, Figure 26. shows a sample system setup with the main backplane holding an off-the-shelf,
CPCI form factor power supply behind and the bridge node and one router board in front. The
router board has its passive backplane hanging from the back. The bridge has an I/O node con-
nected.

FIGURE 26. ASNT System - Backplane with Supernode

6/22/2000

5.0 Conclusion

ASNT was a very ambitious project with several significant research facets: the split network con-
cept, the Trans-scalar Programming Model, subnet integration protocols and techniques identified
in the initial goals along with the DES encryption VLSI. The results show the split network con-
cept to be very powerful, providing a 50% increase in communication traffic before congestion
and two orders of magnitude less variance in latency on a low-latency control network. Our DES
VLSI implementation proved the feasibility of real-time DES support which is essential for appli-
cations requiring security, high throughput and low latency are required. The Trans-scalar Pro-
gramming Model effort produced a hierarchical framework to solve scalable programming
problems and led to a parallel version of heapsort and a scale-invariant hardware architecture.
Moreover, the ASNT hardware implementation is being used as a host and testbed for PIM (Pro-
cessor in Memory) devices on the DIVA (Data IntensiVe Architecture) project.

“U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10045

47

DISTRIBUTION

addresses

AFRL/IFG i

ATTN: ROBERT XAMINSKI

525 BRODOXS ROAD

ROME, NEW YORK 13441-4505

USC/7IsI
L5676 ADMIRALTY WAY
MARINA DEL REY, CA 90292

AFRL/IFOTIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-0CC
DEFENSE TECHNICAL INFO CENTER

LIST

B725 JOHN J. KINGMAN RDAD, STE 0943

FT. BELVOIR, VA 22060-62138

DEFENSE ADVANCED RESEARCH
PROJECLTS AGENLY

T701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER

IIT RESEARCH INSTITUTE
201 MILL 57.

ROME, NY 13440

AFIT ACADEMIC LIDRARY
AFIT/LDR, 2950 PLSTREET
AREA Bs BLDG 642

WRIGHT-PATTLERSON AF3 0OH 45433-7765

AFRL/HESC-TDC
2678 & STREEY, aLdG 190

WRIGHT-PATTERSON AF3 OH 45433-7604

DL-1

numher
of copies

3

ATTN: S™MDC IM PL

US ARMY SPACE & MISSILFE DEF CMD
Pa0a 30X 1500

HUNTSVILLE AL 35807-3801

COMMANDER, CODE 4TLOOOD
TECHNICAL LIARARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAXE CA 93555-5100

CDR, US ARMY AVIATION ? MISSILE (™MD
REDSTONE SCIENTIFIC INFORMATION CTP®
ATTN: AMSAM=RD~08=-R, (DOCUMENTS)
PEDSTONE ARSENAL AL 35278-5000

REPORT LIBRARY

M5 P3b4

LOS ALAMOS NATTIONAL LARORATORY
LOS ALAMOS NM 27545

ATTN: D'3ORAH HART
AVIATION BRANCH SVC 122.10
FOR10A, BM 931

00 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFIWC/ASY
102 HALL BLYD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA #. YDURISON
SOFTWARE ENGINTERING INSTITUTE
4500 FIFTH AVENUF

PITTS4SURGH PA 152173

USAF/ATIR FORCE RESTZARCH LARORATORY
AFRL/VSOSACLT3RARY=HSLDSE 1103

5 WRIGHT DRIVE

HANSCOM AF3 MA D1731-3004

ATTN: ETLEEN LADUXE/D&4AQ
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD M4 01730

D

-
1

ha

QUSD(PY/DTSA/DUTD

ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 300 ‘

ARLINGTON vA 22202

AFRL/IFG

ATTN: WARREN DEDANY

525 BROOXS RDAD

ROME, NEW YORK 13441-43505

pL=3

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

